Previous studies have shown that self-generated stimuli in auditory, visual, and somatosensory domains are attenuated, producing decreased behavioral and neural responses compared with the same stimuli that are externally generated. Yet, whether such attenuation also occurs for higher-level cognitive functions beyond sensorimotor processing remains unknown. In this study, we assessed whether cognitive functions such as numerosity estimations are subject to attenuation in 56 healthy participants (32 women). We designed a task allowing the controlled comparison of numerosity estimations for self-generated (active condition) and externally generated (passive condition) words. Our behavioral results showed a larger underestimation of self-generated compared with externally generated words, suggesting that numerosity estimations for self-generated words are attenuated. Moreover, the linear relationship between the reported and actual number of words was stronger for self-generated words, although the ability to track errors about numerosity estimations was similar across conditions. Neuroimaging results revealed that numerosity underestimation involved increased functional connectivity between the right intraparietal sulcus and an extended network (bilateral supplementary motor area, left inferior parietal lobule, and left superior temporal gyrus) when estimating the number of self-generated versus externally generated words. We interpret our results in light of two models of attenuation and discuss their perceptual versus cognitive origins. SIGNIFICANCE STATEMENT We perceive sensory events as less intense when they are self-generated compared with when they are externally generated. This phenomenon, called attenuation, enables us to distinguish sensory events from self and external origins. Here, we designed a novel fMRI paradigm to assess whether cognitive processes such as numerosity estimations are also subject to attenuation. When asking participants to estimate the number of words they had generated or passively heard, we found bigger underestimation in the former case, providing behavioral evidence of attenuation. Attenuation was associated with increased functional connectivity of the intraparietal sulcus, a region involved in numerosity processing. Together, our results indicate that the attenuation of self-generated stimuli is not limited to sensory consequences but is also impact cognitive processes such as numerosity estimations.
Publication scientifique
Increased Functional Connectivity of the Intraparietal Sulcus Underlies the Attenuation of Numerosity Estimations for Self-Generated Words
Autres publications de la plateforme
Causal disconnectomics of motion perception networks: insights from transcranial magnetic stimulation‐induced...
Boosting hemianopia recovery: the power of interareal cross-frequency brain stimulation
A graphical pipeline platform for MRS data processing and analysis: MRSpecLAB
Brain activation for language and its relationship to cognitive and linguistic...
Resting-state functional connectivity abnormalities in subjective cognitive decline: A 7T MRI...
Translational research approach to social orienting deficits in autism: the role...
Journal de publication
Auteurs:
Date de publication:
Plateforme:
Études récentes de la plateforme

Restaurer le mouvement après une paralysie

Pourquoi certains cerveaux adorent apprendre les langues










