Publication scientifique

AccueilReturn of the GEDAI: Unsupervised EEG Denoising based on Leadfield Filtering

Return of the GEDAI: Unsupervised EEG Denoising based on Leadfield Filtering

Abstract Current electroencephalogram (EEG) denoising methods struggle to remove the complex physiological and environmental artifacts typical of real-world settings, which both hinders the isolation of true neural activity and limits the technology’s translational potential. We present the Generalized Eigenvalue De-Artifacting Instrument (GEDAI), a novel algorithm for denoising highly contaminated EEG. GEDAI employs leadfield filtering to selectively remove noise and artifacts that diverge from a theoretically defined EEG forward model. This approach offers unique advantages over existing solutions, including 1) denoising of highly corrupt recordings without “clean” reference data, 2) single-step correction of artifactual epochs and bad channels, 3) unsupervised detection of brain and noise components based on the signal and noise subspace alignment index (SENSAI). In ground-truth simulations with synthetic and empirical EEG contaminated with realistic artifacts (EOG, EMG, noise), GEDAI globally outperformed leading denoising techniques based on principal component analysis (ASR) and independent component analysis (IClabel, MARA), revealing large effect sizes in challenging scenarios with simultaneous artifact mixtures, low signal-to-noise ratio (-9 dB), and high temporal contamination (up to 100%). Its superior denoising also enhanced neurobehavioral predictions, yielding highest accuracies in ERP classification and brain fingerprinting. GEDAI’s autonomy, computational speed and noise-resilience could find future applications in 1) real- world medical , mobile and dry electrode EEG recordings 2) magnetoenecephalography (MEG ) denoising (given the shared M/EEG forward model), and 3) real-time brain-computer interfaces (BCIs). The Matlab code for GEDAI is available as an open-source EEGLAB plugin at https://github.com/neurotuning/GEDAI-master

Autres publications de la plateforme

Causal disconnectomics of motion perception networks: insights from transcranial magnetic stimulation‐induced...

Raffin, Estelle; Salamanca‐Giron, Roberto F.; Huxlin, Krystel R.; Reynaud, Olivier; Mattera, Loan; Martuzzi, Roberto; Hummel, Friedhelm C.
The Journal of Physiology
Plateforme M/EEG & Neuromod (MEG)

Boosting hemianopia recovery: the power of interareal cross-frequency brain stimulation

Raffin, Estelle; Bevilacqua, Michele; Windel, Fabienne; Menoud, Pauline; Salamanca-Giron, Roberto F; Feroldi, Sarah; Zandvliet, Sarah B; Ramdass, Nicola; Draaisma, Laurijn; Vuilleumier, Patrik; Guggisberg, Adrian G; Bonvin, Christophe; Fleury, Lisa; Huxlin, Krystel R; Beanato, Elena; Hummel, Friedhelm C
Brain

Multivariate deep phenotyping reveals behavioral correlates of non-restorative sleep in 22q11.2...

Reich, Natacha; Imparato, Andrea; Cataldi, Jacinthe; Thillainathan, Niveettha; Delavari, Farnaz; Schneider, Maude; Eliez, Stephan; Siclari, Francesca; Sandini, Corrado
Psychiatry Research

EEG microstate D as psychosis-specific correlate in adolescents and young adults...

Liebrand, Matthias; Katsarakis, Angelos; Josi, Johannes; Diezig, Sarah; Michel, Chantal; Schultze-Lutter, Frauke; Rochas, Vincent; Mancini, Valentina; Kaess, Michael; Hubl, Daniela; Koenig, Thomas; Kindler, Jochen
Schizophrenia Research

EEG correlates of egocentric and altercentric biases in forensic cases with...

Rochas, Vincent; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François R.; Eytan, Ariel; Pegna, Alan J.; Michel, Christoph M.; Giannakopoulos, Panteleimon
Frontiers in Neuroscience

EEG microstates, acute phase negative symptoms of schizophrenia and antipsychotic treatment...

De Pieri, Marco; Rochas, Vincent; Apostolopoulou, Dafni; Kirschner, Matthias; Sabe, Michel; Bartolomei, Javier; Bègue, Indrit; Koenig, Thomas; Kaiser, Stefan
Progress in Neuro-Psychopharmacology and Biological Psychiatry

Journal de publication

Auteurs:

Ros, Tomas; Férat, Victor; Huang, Yingqi; Colangelo, Cristina; Kia, Seyed Mostafa; Wolfers, Thomas; Vulliemoz, Serge; Michela, Abele

Date de publication:

Plateforme:

Études récentes de la plateforme

Neuro-ingénierieNeurosciences cliniques et translationnelles

Restaurer le mouvement après une paralysie

Stimulation électrique de la moëlle épinière Un réseau d’électrodes implantables, connecté à un stimulateur implanté, délivre des impulsions électriques aux différents nerfs spinaux. Chaque...
Plateforme d’Imagerie par Résonance Magnétique (IRM)Plateforme de Micro-Systèmes Neuronaux (NMP)Plateforme de Neurosciences Précliniques (PNP)Plateforme M/EEG & Neuromod (MEG)

Comment les souvenirs évoluent-ils avec le temps ?

Une fenêtre sur le cerveau La magnétoencéphalographie (MEG) nous permet d’enregistrer l’activité neuronale avec une grande précision spatiale et temporelle. Nous utilisons cette technique...
Plateforme de Recherche Clinique et sur le Sommeil (CSR)Plateforme M/EEG & Neuromod (MEG)

Stimulation cérébrale à domicile pour booster la cognition

Améliorer la cognition Explorer la stimulation cérébrale non invasive pour soutenir les fonctions exécutives La stimulation transcrânienne par courant alternatif (tACS) utilise de faibles...
Plateforme d’Imagerie par Résonance Magnétique (IRM)Plateforme M/EEG & Neuromod (MEG)