Publication scientifique

AccueilThe Effect of User Learning for Online EEG Decoding of Upper-Limb Movement...

The Effect of User Learning for Online EEG Decoding of Upper-Limb Movement Intention

Electroencephalography (EEG) based brain-computer interfaces (BCIs) offer a promising way for individuals with motor impairments to control prosthetic or rehabilitation devices. Accurately decoding movement intention (MI) is crucial for translating subjects’ motor execution plans into action. Common challenges in EEG-based BCIs include performance discrepancies, often requiring frequent recalibration of decoding algorithms. The objective of this study was enhancing BCI decoding performance of upper-limb MI identification by exploiting both machine and subjects’ learning and maintaining stable decoding algorithms. Significant performance improvements were observed across most subjects from the first to the last session of the experiment. Some subjects also demonstrated stable performance without requiring any model recalibration between sessions. All subjects achieved high efficacy in online decoding of movement intention, as reflected in improvement of the F1 score from 0.58pm 0.26 in the first session, to 0.84pm 0.13 in the final session. We emphasize the critical importance of allowing users sufficient time to improve their performance in BCIs for upper-limb MI decoding. Unlike existing studies, we specifically evaluate the effect of stable decoding strategies in online and longitudinal BCI sessions, which are key to achieving more reliable and effective BCIs.

Autres publications de la plateforme

Causal disconnectomics of motion perception networks: insights from transcranial magnetic stimulation‐induced...

Raffin, Estelle; Salamanca‐Giron, Roberto F.; Huxlin, Krystel R.; Reynaud, Olivier; Mattera, Loan; Martuzzi, Roberto; Hummel, Friedhelm C.
The Journal of Physiology
Plateforme M/EEG & Neuromod (MEG)

Boosting hemianopia recovery: the power of interareal cross-frequency brain stimulation

Raffin, Estelle; Bevilacqua, Michele; Windel, Fabienne; Menoud, Pauline; Salamanca-Giron, Roberto F; Feroldi, Sarah; Zandvliet, Sarah B; Ramdass, Nicola; Draaisma, Laurijn; Vuilleumier, Patrik; Guggisberg, Adrian G; Bonvin, Christophe; Fleury, Lisa; Huxlin, Krystel R; Beanato, Elena; Hummel, Friedhelm C
Brain

Return of the GEDAI: Unsupervised EEG Denoising based on Leadfield Filtering

Ros, Tomas; Férat, Victor; Huang, Yingqi; Colangelo, Cristina; Kia, Seyed Mostafa; Wolfers, Thomas; Vulliemoz, Serge; Michela, Abele

Multivariate deep phenotyping reveals behavioral correlates of non-restorative sleep in 22q11.2...

Reich, Natacha; Imparato, Andrea; Cataldi, Jacinthe; Thillainathan, Niveettha; Delavari, Farnaz; Schneider, Maude; Eliez, Stephan; Siclari, Francesca; Sandini, Corrado
Psychiatry Research

EEG microstate D as psychosis-specific correlate in adolescents and young adults...

Liebrand, Matthias; Katsarakis, Angelos; Josi, Johannes; Diezig, Sarah; Michel, Chantal; Schultze-Lutter, Frauke; Rochas, Vincent; Mancini, Valentina; Kaess, Michael; Hubl, Daniela; Koenig, Thomas; Kindler, Jochen
Schizophrenia Research

EEG correlates of egocentric and altercentric biases in forensic cases with...

Rochas, Vincent; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François R.; Eytan, Ariel; Pegna, Alan J.; Michel, Christoph M.; Giannakopoulos, Panteleimon
Frontiers in Neuroscience

Journal de publication

IEEE Transactions on Medical Robotics and Bionics

Auteurs:

Ceradini, Matteo; Tortora, Stefano; Micera, Silvestro; Tonin, Luca

Date de publication:

Plateforme:

Études récentes de la plateforme

Neuro-ingénierieNeurosciences cliniques et translationnelles

Restaurer le mouvement après une paralysie

Stimulation électrique de la moëlle épinière Un réseau d’électrodes implantables, connecté à un stimulateur implanté, délivre des impulsions électriques aux différents nerfs spinaux. Chaque...
Plateforme d’Imagerie par Résonance Magnétique (IRM)Plateforme de Micro-Systèmes Neuronaux (NMP)Plateforme de Neurosciences Précliniques (PNP)Plateforme M/EEG & Neuromod (MEG)

Comment les souvenirs évoluent-ils avec le temps ?

Une fenêtre sur le cerveau La magnétoencéphalographie (MEG) nous permet d’enregistrer l’activité neuronale avec une grande précision spatiale et temporelle. Nous utilisons cette technique...
Plateforme de Recherche Clinique et sur le Sommeil (CSR)Plateforme M/EEG & Neuromod (MEG)

Stimulation cérébrale à domicile pour booster la cognition

Améliorer la cognition Explorer la stimulation cérébrale non invasive pour soutenir les fonctions exécutives La stimulation transcrânienne par courant alternatif (tACS) utilise de faibles...
Plateforme d’Imagerie par Résonance Magnétique (IRM)Plateforme M/EEG & Neuromod (MEG)