Publication scientifique

AccueilRecovery of walking after paralysis by regenerating characterized neurons to their natural...

Recovery of walking after paralysis by regenerating characterized neurons to their natural target region

Axon regeneration can be induced across anatomically complete spinal cord injury (SCI), but robust functional restoration has been elusive. Whether restoring neurological functions requires directed regeneration of axons from specific neuronal subpopulations to their natural target regions remains unclear. To address this question, we applied projection-specific and comparative single-nucleus RNA sequencing to identify neuronal subpopulations that restore walking after incomplete SCI. We show that chemoattracting and guiding the transected axons of these neurons to their natural target region led to substantial recovery of walking after complete SCI in mice, whereas regeneration of axons simply across the lesion had no effect. Thus, reestablishing the natural projections of characterized neurons forms an essential part of axon regeneration strategies aimed at restoring lost neurological functions. , Editor’s summary Although several experimental approaches have shown positive results in axonal regeneration after spinal cord injury (SCI), complete recovery of motor functions remains an elusive target. Squair et al . hypothesized that restoration of complete axonal projection of a selected neuronal population to their natural target could promote better functional recovery. After using single-cell RNA sequencing to identify the most promising neuronal population, the authors showed that promoting axonal growth and path guidance to their natural target in this population restored walking in mice after complete SCI. By contrast, broad axonal restoration across the lesion had no effect, suggesting that a more targeted approach is necessary for functional recovery after SCI. —Mattia Maroso , Restoring axonal projections of selected neurons to their target is critical for functional recovery after spinal cord injury in mice.

Autres publications de la plateforme

Hypothalamic deep brain stimulation augments walking after spinal cord injury

Cho, Newton; Squair, Jordan W.; Aureli, Viviana; James, Nicholas D.; Bole-Feysot, Léa; Dewany, Inssia; Hankov, Nicolas; Baud, Laetitia; Leonhartsberger, Anna; Sveistyte, Kristina; Skinnider, Michael A.; Gautier, Matthieu; Laskaratos, Achilleas; Galan, Katia; Goubran, Maged; Ravier, Jimmy; Merlos, Frederic; Batti, Laura; Pages, Stéphane; Berard, Nadia; Intering, Nadine; Varescon, Camille; Watrin, Anne; Duguet, Léa; Carda, Stefano; Bartholdi, Kay A.; Hutson, Thomas H.; Kathe, Claudia; Hodara, Michael; Anderson, Mark A.; Draganski, Bogdan; Demesmaeker, Robin; Asboth, Leonie; Barraud, Quentin; Bloch, Jocelyne; Courtine, Grégoire
Nature Medicine
Plateforme de Neurosciences Précliniques (PNP)

A neuronal architecture underlying autonomic dysreflexia

Soriano, Jan Elaine; Hudelle, Remi; Mahe, Lois; Gautier, Matthieu; Teo, Alan Yue Yang; Skinnider, Michael A.; Laskaratos, Achilleas; Ceto, Steven; Kathe, Claudia; Hutson, Thomas; Charbonneau, Rebecca; Girgis, Fady; Casha, Steve; Rimok, Julien; Tso, Marcus; Larkin-Kaiser, Kelly; Hankov, Nicolas; Gandhi, Aasta; Amir, Suje; Kang, Xiaoyang; Vyza, Yashwanth; Martin-Moraud, Eduardo; Lacour, Stephanie; Demesmaeker, Robin; Asboth, Leonie; Barraud, Quentin; Anderson, Mark A.; Bloch, Jocelyne; Squair, Jordan W.; Phillips, Aaron A.; Courtine, Gregoire
Nature

Dual lineage origins contribute to neocortical astrocyte diversity

Zhou J, Vitali I, Roig-Puiggros S, Javed A, Cantando I, Puglisi M, Bezzi P, Jabaudon D, Mayer C, Bocchi R.

Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves...

Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, Singh A, Rinsch C, Marcinek DJ, D’Amico D.

Regional differences in progenitor metabolism shape brain growth during development

Baumann N, Wagener RJ, Javed A, Conti E, Abe P, Lopes A, Sansevrino R, Lavalley A, Magrinelle, E, Szalai T, Fuciec Dm Ferreira C, Fievre S, Fouassier A, D’amico D, Harshnitz O, Jabaudon D

Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives

Journal de publication

Science

Auteurs:

Squair, Jordan W.; Milano, Marco; De Coucy, Alexandra; Gautier, Matthieu; Skinnider, Michael A.; James, Nicholas D.; Cho, Newton; Lasne, Anna; Kathe, Claudia; Hutson, Thomas H.; Ceto, Steven; Baud, Laetitia; Galan, Katia; Aureli, Viviana; Laskaratos, Achilleas; Barraud, Quentin; Deming, Timothy J.; Kohman, Richie E.; Schneider, Bernard L.; He, Zhigang; Bloch, Jocelyne; Sofroniew, Michael V.; Courtine, Gregoire; Anderson, Mark A.

Date de publication:

Plateforme:

Études récentes de la plateforme

Neuro-ingénierieNeurosciences cliniques et translationnelles

Restaurer le mouvement après une paralysie

Stimulation électrique de la moëlle épinière Un réseau d’électrodes implantables, connecté à un stimulateur implanté, délivre des impulsions électriques aux différents nerfs spinaux. Chaque...
Plateforme d’Imagerie par Résonance Magnétique (IRM)Plateforme de Micro-Systèmes Neuronaux (NMP)Plateforme de Neurosciences Précliniques (PNP)Plateforme M/EEG & Neuromod (MEG)

Décoder les ondes de l’activité cérébrale

Comment nous avons identifié le mécanisme Nous avons utilisé une technique appelée « optogénétique », qui utilise des impulsions lumineuses pour activer sélectivement le locus...
Plateforme de Neurosciences Précliniques (PNP)

Reconnecter le cerveau social

Rééquilibrer les neuromodulateurs De nouvelles approches, y compris une stimulation cérébrale ciblée et des traitements à base de psychédéliques contrôlés avec soin, visent à...
Plateforme de Neurosciences Précliniques (PNP)